Network Automation @ LinkedlIn

._,//;

Naufal Jamal
Staff Network Engineer @ LinkedIn

Agenda

e Some common network problem statements.

e Challenges in network maintenance and when it turns into
network outages.

e NetSMART (Network Simplified Maintenance and Reporting Tool).

e StateDB. Network state information using REST API’s.

e Network Traffic Shift. Auto remediation of link failures in Data
Centers.

Challenges In Network Maintenances

Problem Statement : A growing infrastructure is always changing. Maintenance Is
an inevitable part of our daily work.

How do | make sure that my maintenance doesn't cause any outage?

Sometimes, we may overlook certain things during the Maintenance. This can
cause potential unforeseen outages.

Solution: So we need to have a tool In place that will show the state changes of the
gears that were under maintenance. A tool which will give us a clear picture of
network state change brought by a maintenance.

NetSMART (Network Simplified Maintenance and Reporting Tool)

An In-house tool to track the changes brought by any maintenance.

Simple workflow of NetSMART

User creates list of
network devices under
maintenance.

User inputs that filename to
NetSMART.

A report Is generated with the

NetSMART executes
prechecks on the input
devices. stores in a Json
format.

Engineer performs the
maintenance.

NetSMART executes the
postchecks and performs the

diffs and presented to the
engineer.

comparison with the
precheck file.

List of commands for juniper platform

Platform Command Notes

Juniper show bgp summary | match Estab | no-more Captures established BGP peers
Juniper show chassis routing-engine | match Idle Capture CPU information

Juniper show configuration | display set | except mpls | except bgp | except firewall Captures config excluding sensitive info.

| except policy | except secret | except password | except snmp | no-more

Juniper show configuration | display set | match bgp | no-more Captures BGP config

Juniper show configuration | display set | match firewall | except count | no-more Captures firewall config
Juniper show configuration | display set | match mpls | no-more Captures MPLS config
Juniper show configuration | display set | match policy | except policy-options | no-more Captures policy config
Juniper show configuration | display set | match policy-options | no-more Captures policy options config

Juniper show isis adjacency | no-more Captured ISIS adjacency

Juniper show lldp neighbors | no-more Captured LLDP neighbors

Juniper show mpls Isp | match PRI | no-more Captures LSP's which are primary

Juniper show route 0.0.0.0 brief | match via | except label-switched-path | no-more Captures default route information

Juniper show route advertising-protocol bgp <peer> | except /32 | except Last | no-more Captures route advertised to only e0O/e1/crt

Juniper show route receive-protocol bgp <peer> ' | except /32 | except Last | no-more Captures route received only from e0O/e1/crt

Juniper show route receive-protocol bgp <transit ip> | match inet.0 Captures number of routes received from
transit

Juniper show rsvp neighbor | no-more Captures RSVP neigbors

Juniper show system memory | match Free Captures free memory

cisco_functions.py

def cisco_capture_bgp(device, username, password): def

result = {}

connection = paramiko.SSHClient()

connection.connect(device, port=22, username=username, password-=password,

look_for_keys=False, timeout=None)
connection.recv()
output

output
result['device'l]
result

netsmart.py

juniper_functions
cisco_fTunctions

def functions(device, username,
platform ‘cisco':
output
platform
output
json_format[devicel
json_format

'juniper':
[juniper_functions.
output

def run(device_list)
pool_size
p = Pool(pool_size)
result = p.map(functions, device_list)
result

def json_compare(jsonl, json2):

diff

min(num_of_cpu, len(device_list))

juniper_functions.py

juniper_capture_bgp(device, username, password):

result = {}

connection = paramiko.SSHClient()

connection.connect(device, port=22, username-username, password-password,
look_for_keys=False, timeout=None)

Separate Modules for
each platform which
contains functions specific
to that platform.

connection.recv()
output

output
result['device']
result

password) :

[cisco_functions.cisco_capture_bgp(args),

juniper_capture_bgp(args),

Pool is used to process multiple
devices at the same time.

JSON compare compares 2 json
files and return the diff.

Sample NetSMART output

[njamalC I ¢ netsmart --snapshot maintenance_precheck.json --device_list netsmart_devices.txt --cm (M-50552

NetSMART: Network Simplified Maintenance and Reporting Tool
***Please Always use the FQDN for devices
Please visit piEE to see what parameters are covered

Questions? Reach out to Naufal Jamal njamal@linkedin.com

Below Gears will be Captured by NetSMART

I kedin . com
Capturing device config for | 1nkedin. com

Capturing device MPLS config for | kedin. com

Capturing device BGP config for N nkedin.com
Capturing BGP peers information for N nledin.com

---Generating Devices Snapshot---

Attaching the report to the (M
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 1118k @ 964 100 1117k 236 274k 0:00:04 0:00:04 --:--:-- 299

NetSMART report attached to (M-50552

NetSMART - Network State Change Report
— At the end of maintenance, a detailed report
o NetSMART <netsmart@linkedin.com>

Kapadan Jamal IS generated and sent over email.

sunday, November 26, 2017 at 10:59 PM
Show Details

NetSMART - Network Maintenance Report

Red marked fields show the changes that

happened due to the maintenance.

Maintenance CM-51569 performed by njamal
Below is the network state change report

Helps Engineers to see any unexpected changes

Device:- WNPUIINUINN kedin.com and take prgactive steps.
| Config Added | Config Deleted
BGP UP Peers Before CM BGP UP Peers After CM
New BGP Peers UP Post CM BGP Peers DOWN After CM
Default Route Hops Default Route Hops

Default Route Next Hops added after CM |Default Route Next Hops deleted after CM

Default Route Protocol Default Route Protocol
BGP BGP
| BGP Peer Advertisements Added BGP Peer Advertisements Deleted
D | 5GP Routes Advertised deleted after
| BGP Peer Received Routes Added | BGP Peer Received Routes Deleted

StateDB

Problem Statement : With a growing number of network automation engineers, how
do we avoid multiple scripts logging into the devices to extract the same information?

Imagine 10 different scripts logging into the devices at the same time. If the scripts
don't cleanly terminate the ssh connection, it may prevent legit users from accessing
the devices.

Sometimes common operations like, fetching BGP/Link Info etc. are repeated In
many scripts resulting in duplication of code.

Solution: We need to store network state information of the devices in a central
database and expose that information using REST API's so that any application
which wants to consume that data can do so without having to login to devices

Benefits:

e Enable automation engineers to write lightweight applications because most of the
common network operations code logic is offloaded to stateDB.

e Smaller number of SSH sessions to the devices. No need to login to devices for getting
network information everytime.

e VVendor agnostic. Automation engineers don’t need to write separate logic for different
platforms. E.g Engineer says get me the BGP neighbors in device ‘X’. StateDB determines
the platform and returns the data in a standard schema (json)

Example:
https://url/api/vl/device=xyz@Ilinkedin.com

Would return data in JSON structure like below

{

"Xyz@.linkedin.com": |

{

"bgp™:

{

"bgp _total peer": 20,

"bgp_router_id": "12345",

"bgp_v4 peer": ['1.1.1.1","2.2.2.2", "3.3.3.3"],
"bgp_v6_peer": ['a:a:a:a", "b:b:b:b", "c:c:c:c"],
<<Snipped>>

b
"bfd":
i

https://url/api/v1/device=xyz@linkedin.com

REST API Endpoints:

e /device - When used, it queries the stateDB and returns the
results in JSON format. Used when the information needed is
very less often changed in the network. E.g Code versions, NTP
servers etc.

e /realtime/device - When used, it queries the device directly and
returns the result in JSON format. Used when the information
requested for is time sensitive. E.g BGP status, Links status.

High Level Design

Returns a JSON Realtime AP, triggers the audit and
With awdit data /' ‘\\\ Returms the realtime auwdit data
And also updates the statedb.

i Pollers update the

State DB every 5 hrs
-
T Updates State DB SMMPISSH

Using auditin ibraries
Every 5 hra

SMMP/SSH
-

™

Code structure (REST API over
flask

/\

[."'delnce [/realtime/device)
[Couchbase))

'
(oeauy)

Retern JSOM to user |

Platform1 lib

Platform2 lib

Technologies to be used

Python : All StateDB libraries for all platforms written in python.
Flask : All REST API endpoints to be written In flask.
Couchbase : Nosgl data store for the statedD.

SNMP/SSH : Mechanisms to be used to pull data from statedb.

Multiprocessing : Pool feature used to spawn parallel threads for faster execution.

Network Traffic Shift

Problem Statement : Whenever links inside DC go problematic, there Is a lot of back
and forth between the network engineers and the DC techs to Isolate and repair faulty
links. DC team has to rely a lot on the Network team to repair any link. Network team
has to manually monitor for link issues and drain the traffic manually.

Network engineers should not come to know when a link goes bad.
DC team should not rely on the network engineers to repair any link.

Current Workflow

1.Link flap event occurs in DC. It can be either a link flaps or link errors.

2.An alert Is generated.

3.Network engineer claims the alert and drains the traffic from the link by shutting
BGP.

4.Network engineer creates a ticket for DC team for cabling repair.

5.DC team reaches out to network engineer to drain the traffic fully on the impacted
ports in order to repair the cables.

6.DC team replaces the cables and optics.

7/.network engineer then unshut the BGP on the links.

8.network engineer then has to manually monitor the link before closing the issue.

IN Short, A LOT OF BACK and FORTH between Network and DC Teams!!

Goals:

e \We need to have a tool in place which should monitor for faulty links Iin the system
e Drains the traffic out of the link automatically If faulty.
e Reduce Interactions between Network and DC teams on troubleshooting link issues.
e A tool intelligent enough to determine when to take a link in/out of service
without causing any disruptions in the network.
e \We need some reporting features to tell us stats like, optic types which flaps the
most etc.

e Network engineers should not even come to know that a link has gone bad and
should be auto-remediated.

Flowchart

Link issue triggered

Murse is a module that

An Alert is posted in
monitoring dashboard

listens to the alerts being posted
J To our monitoring dashboard.

Rest APl Webhook

NURSE

Metworktrafficshift [=

'

Determine how bad
the link is. errors/flaps

Prechecks before link
drain out.

Shuts BGP on the link

Verification Cron Jobs

Close the tickets automatically if links are
clean else send a notification to DC team

Workflow (When the script is run manually)

python networktrafficshift.py --device xyz.linkedin.com --port 0/217

Z Z2 2 2 Z2 2

~oN|
~oN|
~oN|
~oN|

-0:

-0:

traffics
traffics
traffics
traffics
traffics

traffics

Nift]
Nift]

ift]:
ift]:
ift]:

Nift]

:Fetching Flap count for xyz.linkedin.com

:Alerts Supressed!

~etching errors data for the last 24 hrs for xyz.linkedin.com
~etching ports for xyz.linkedin.com

~etching BGP V4/V6 Peers to be shut in xyz.linkedin.com
:Checking ECMP for xyz.linkedin.com

==Traffic Fallout Summary==

Device : xyz.linkedin.com
Port : 0/217
~lap Count : 20

nput Errors : 0.4

Output Errors : 0.0

N
N
N

-0:
-0:

-0:

traffics
traffics

traffics

Nift]
Nift]

Nift]

:Config Push in Progress for xyz.linkedin.com
:DCTECHS ticket DCTECHS-xxxxx created
‘Validating failout for xyz.linkedin.com

_ink failed out for xyz.linkedin.com 0/217

How do we verity if the links are good or not?

e Every information (device, port, ticket) for a link drainout is stored a redisDB instance.
e A Cron job reads the redisDB every 24 hrs.
e For every entry in the DB, the script does the below checks:

If the portis UP

If there are any errors on the link

If there are any flaps on the link
e |f the Link is clean, then the tickets are closed automatically.
e |f the Link is not clean, then an automated notification is sent to the Data Center team.
e Network engineers don't even come to know a link going bad and being fixed :)

Network Traffic Shift Daily Report

Tuesday, August 21, 2018 at 11:41 AM

Networktrafficshift <networktrafficshift@linkedin.com>
o Naufal Jamal; Naufal Jamal

Show Details

Device

Port

0/217

Ethernetl/29/2

0/195

Ethernetl/30/1

0/217

Ethernetl/29/1

0/161

Ethernetl/29/1

0/217

Ethernetl/19/2

0/217

Assignee

NEO Ticket

DCTECHS ticket

Opened

O Days

7 Days

1 Days

1 Days

1 Days

1 Days

1 Days

O Days

1 Days

1 Days

1 Days

Reporting and tracking

e Areport like shown is sent every 24 hrs to
respective teams to track each ticket

e Shows if any ticket is breaching the SLA or not

e Shows data like type of optics that errors the
most, DC’s with most number of issues etc.

That's IT!
Questions

