

Agenda

● Some common network problem statements.
● Challenges in network maintenance and when it turns into

network outages.
● NetSMART (Network Simplified Maintenance and Reporting Tool).
● StateDB. Network state information using REST API’s.
● Network Traffic Shift. Auto remediation of link failures in Data

Centers.

Challenges in Network Maintenances

Problem Statement : A growing infrastructure is always changing. Maintenance is

an inevitable part of our daily work.

How do I make sure that my maintenance doesn't cause any outage?

Sometimes, we may overlook certain things during the Maintenance. This can

cause potential unforeseen outages.

Solution: So we need to have a tool in place that will show the state changes of the

gears that were under maintenance. A tool which will give us a clear picture of

network state change brought by a maintenance.

NetSMART (Network Simplified Maintenance and Reporting Tool)

An In-house tool to track the changes brought by any maintenance.

User creates list of

network devices under

maintenance.

User inputs that filename to

NetSMART.

NetSMART executes

prechecks on the input

devices. stores in a Json

format.

Engineer performs the

maintenance.

NetSMART executes the

postchecks and performs the

comparison with the

precheck file.

Simple workflow of NetSMART

A report is generated with the

diffs and presented to the

engineer.

List of commands for juniper platform

cisco_functions.py juniper_functions.py

netsmart.py

Separate Modules for

each platform which

contains functions specific

to that platform.

Pool is used to process multiple

devices at the same time.

JSON compare compares 2 json

files and return the diff.

<<Snipped>>

Sample NetSMART output

At the end of maintenance, a detailed report

is generated and sent over email.

Red marked fields show the changes that

happened due to the maintenance.

Helps Engineers to see any unexpected changes

and take proactive steps.

StateDB

Problem Statement : With a growing number of network automation engineers, how

do we avoid multiple scripts logging into the devices to extract the same information?

Imagine 10 different scripts logging into the devices at the same time. If the scripts

don’t cleanly terminate the ssh connection, it may prevent legit users from accessing

the devices.

Sometimes common operations like, fetching BGP/Link info etc. are repeated in

many scripts resulting in duplication of code.

Solution: We need to store network state information of the devices in a central

database and expose that information using REST API’s so that any application

which wants to consume that data can do so without having to login to devices

Benefits:

● Enable automation engineers to write lightweight applications because most of the

common network operations code logic is offloaded to stateDB.

● Smaller number of SSH sessions to the devices. No need to login to devices for getting
network information everytime.

● Vendor agnostic. Automation engineers don’t need to write separate logic for different
platforms. E.g Engineer says get me the BGP neighbors in device ‘X’. StateDB determines
the platform and returns the data in a standard schema (json)

Example:
https://url/api/v1/device=xyz@linkedin.com

Would return data in JSON structure like below

{

"xyz@.linkedin.com": [

{

"bgp":

{

"bgp_total_peer": 20,

"bgp_router_id": "12345",

"bgp_v4_peer": ["1.1.1.1", "2.2.2.2", "3.3.3.3"],

"bgp_v6_peer": ["a:a:a:a", "b:b:b:b", "c:c:c:c"],

<<Snipped>>

},

"bfd":

{

"bfd_v4_peer": ["1.1.1.1", "2.2.2.2", "3.3.3.3"],

"bfd_v6_peer": ["a:a:a:a", "b:b:b:b", "c:c:c:c"],

"bfd_interface": ["eth1/1", "eth11/2", "eth11/3"]

},

"lldp":

{

"lldp_interface": ["eth1/1", "eth11/2", "eth11/3"],

"lldp_peer": ["abc.linkedin.com", "xyz.linkedin.com"]

},

"interface":

{

"interfaces_status": ["eth1/1", "eth11/2", "eth11/3"],

"interfaces_description": [{"eth1/1": "test"}, {"eth11/2": "test"}]

}

]

}

https://url/api/v1/device=xyz@linkedin.com

REST API Endpoints:

● /device - When used, it queries the stateDB and returns the

results in JSON format. Used when the information needed is
very less often changed in the network. E.g Code versions, NTP
servers etc.

● /realtime/device - When used, it queries the device directly and

returns the result in JSON format. Used when the information
requested for is time sensitive. E.g BGP status, Links status.

High Level Design

 Technologies to be used

 Python : All StateDB libraries for all platforms written in python.

Flask : All REST API endpoints to be written in flask.

Couchbase : Nosql data store for the statedb.

SNMP/SSH : Mechanisms to be used to pull data from statedb.

Multiprocessing : Pool feature used to spawn parallel threads for faster execution.

Network Traffic Shift

Problem Statement : Whenever links inside DC go problematic, there is a lot of back

and forth between the network engineers and the DC techs to isolate and repair faulty

links. DC team has to rely a lot on the Network team to repair any link. Network team

has to manually monitor for link issues and drain the traffic manually.

Network engineers should not come to know when a link goes bad.

DC team should not rely on the network engineers to repair any link.

Current Workflow

1.Link flap event occurs in DC. It can be either a link flaps or link errors.

2.An alert is generated.

3.Network engineer claims the alert and drains the traffic from the link by shutting

BGP.

4.Network engineer creates a ticket for DC team for cabling repair.

5.DC team reaches out to network engineer to drain the traffic fully on the impacted

ports in order to repair the cables.

6.DC team replaces the cables and optics.

7.network engineer then unshut the BGP on the links.

8.network engineer then has to manually monitor the link before closing the issue.

 IN Short, A LOT OF BACK and FORTH between Network and DC Teams!!

Goals:

● We need to have a tool in place which should monitor for faulty links in the system

● Drains the traffic out of the link automatically if faulty.

● Reduce interactions between Network and DC teams on troubleshooting link issues.

● A tool intelligent enough to determine when to take a link in/out of service

 without causing any disruptions in the network.

● We need some reporting features to tell us stats like, optic types which flaps the

most etc.

● Network engineers should not even come to know that a link has gone bad and

should be auto-remediated.

Flowchart

Workflow (When the script is run manually)

python networktrafficshift.py --device xyz.linkedin.com --port 0/217

INFO:[trafficshift]:Fetching Flap count for xyz.linkedin.com

INFO:[trafficshift]:Alerts Supressed!

INFO:[trafficshift]:Fetching errors data for the last 24 hrs for xyz.linkedin.com

INFO:[trafficshift]:Fetching ports for xyz.linkedin.com

INFO:[trafficshift]:Fetching BGP V4/V6 Peers to be shut in xyz.linkedin.com

INFO:[trafficshift]:Checking ECMP for xyz.linkedin.com

==Traffic Failout Summary==

Device : xyz.linkedin.com

Port : 0/217

Flap Count : 20

Input Errors : 0.4

Output Errors : 0.0

INFO:[trafficshift]:Config Push in Progress for xyz.linkedin.com

INFO:[trafficshift]:DCTECHS ticket DCTECHS-xxxxx created

INFO:[trafficshift]:Validating failout for xyz.linkedin.com

Link failed out for xyz.linkedin.com 0/217

 How do we verify if the links are good or not?

● Every information (device, port, ticket) for a link drainout is stored a redisDB instance.
● A Cron job reads the redisDB every 24 hrs.
● For every entry in the DB, the script does the below checks:

If the port is UP
If there are any errors on the link
If there are any flaps on the link

● If the Link is clean, then the tickets are closed automatically.
● If the Link is not clean, then an automated notification is sent to the Data Center team.
● Network engineers don't even come to know a link going bad and being fixed :)

Reporting and tracking

● A report like shown is sent every 24 hrs to

respective teams to track each ticket

● Shows if any ticket is breaching the SLA or not

● Shows data like type of optics that errors the

most, DC’s with most number of issues etc.

c

 That’s IT!

 Questions/Feedback?

